
Collective Effects in Linear Spectroscopy of Molecular Aggregates

A. A. Kocherzhenko1, J. Dawlaty2, B. P. Abolins1, F. Herrera3,4, D. B. Abraham5, K. B. Whaley1

1Department of Chemistry, University of California, Berkeley, CA 94720
2Department of Chemistry, University of Southern California, Los Angeles, CA 90089

3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
4Department of Chemistry, Purdue University, West Lafayette, IN 47907

5Department of Theoretical Physics, University of Oxford, UK
(Dated: July 9, 2013)

A consistent analysis of linear spectroscopy for arrays of dipole-coupled two-level molecules reveals
distinct signatures of weak and strong coupling regimes separated by a critical point. Multiple
molecular excitations (odd(even) in weak(strong) coupling) are accessed from the ground state. As
the coupling increases, the single excitation oscillator strength rapidly exceeds the Heitler-London
value and diverges at the critical point, returning to a quadratic size scaling in strong coupling,
where also the photon frequency decreases with size. The lowest accessible excitation is found to
show a one-photon hyperradiance.

PACS numbers: 64.70.Tg, 71.35.Cc

Quantum correlations between light-absorbing pig-
ments can enhance light-matter interaction, resulting
in superradiance, i.e., in anomalously fast spontaneous
emission [1, 2]. In most materials where superradiance is
observed, the interaction energy between chromophores
is smaller than the single-chromophore excitation energy.
We show that systems with stronger interactions between
chromophores can form a correlated quantum phase, sep-
arated from the weak interaction regime by a quantum
critical point. This correlated phase exhibits qualita-
tively new spectroscopic properties, including one-photon
hyperradiance for the lowest excited state. Develop-
ment of materials that possess such properties opens new
prospects for the efficient capture and sensing of light.

Consider a one-dimensional (d = 1) array of M 2-level
chromophores with excitation energy ε that are coupled
by dipole-dipole interactions b between nearest neigh-
bors. This system is described by the Hamiltonian of
Krugler, Montgomery and McConnell (KMM) [3]:

H =

M∑
m=1

[
εP †mPm + b

(
P †m + Pm

) (
P †m+1 + Pm+1

)]
.

(1)
Here P †m creates and Pm annihilates an excitation at site
m (we work with unit lattice spacing). These operators
are a product of a pair of electron creation and anni-
hilation operators in the molecular basis. Since charge
transfer is not allowed, pairs of the operators P †m, Pm
commute off site; on site we have P †mPm + PmP

†
m = 1.

Regarding Pm as a spin lowering operator for a chain of
spin-1/2 entities, i.e., P †m +Pm = σxm, leads, in the usual
Pauli notation, to the equivalent quantum Ising Hamil-
tonian Hspin = ε

∑M
m=1(1 + σzm)/2 + b

∑M
m=1 σ

x
mσ

x
m+1.

With a few exceptions limited to relatively weak cou-
pling [4–6], studies of excitonic energy transfer and spec-
troscopy of dipolar molecular aggregates tend to omit
the double excitation and deexcitation terms, P †mP

†
m+1

and PmPm+1, in Eq. (1). This “Heitler-London” (HL)

approximation reproduces experimental absorption spec-
tra reasonably well for |b| � ε. However, KMM [3]
showed that it is inconsistent to neglect these terms
and that they result in collective effects that lead to
changes in the structure of the ground and excited eigen-
states of Eq. (1). This motivates us to revisit Eq. (1)
with new emphasis on its spectroscopic implications and
with particular focus on the hitherto unexplored con-
sequences of the many-body nature of the Hamiltonian
eigenstates for spectroscopy in the regime of strong cou-
pling, B = 2 |b| /ε > 1, where B is the scaled coupling.
We show that a consistent analysis gives rise to unique
spectroscopic signatures that are forbidden in the HL ap-
proximation and that become dominant as B increases.

Since the eigenstates of Eq. (1) are critical for our
spectroscopic analysis, we first summarize the key fea-
tures of the analytic diagonalization by KMM [3]. The
first step is a Jordan-Wigner transformation of {Pm}:
f1 = P1, fm = Qm−1Pm, Qm =

∏m
j=1

(
1− 2P †j Pj

)
,

for 2 ≤ m ≤ M . The operators
{
fm, f

†
m

}
have lattice-

fermionic anti-commutation relations, so Eq. (1) becomes
a quadratic form in fermions, except for the boundary
term, which gives the expected form in fermions, but mul-
tiplied by−QM . Since [H,QM ] = 0, the Hamiltonian can
be decomposed into two quadratic forms, H+ and H−,
by projection onto orthogonal subspaces: H = Q+H+ +
Q−H−, where Q± = (1±QM ) /2. H+ and H− are then
diagonalized separately, after applying a discrete Fourier
transformation: F † (k) = M−1/2

∑M
m=1 e

ikmf†m, where
for H± : eikM = ∓1, 0 ≤ k < 2π. The allowed values
of the wavenumber k are denoted α = 2π (m− 1) /M for
H− and β = π (2m− 1) for H+. The Bogoliubov-Valatin
transformation G† (k) = cos θ(k)F †(k)− i sin θ(k)F (−k)
diagonalizes H+(H−) for k = β(α), yielding

H± = E± +
∑

k: exp(ikM)=∓1

E (k)G† (k)G (k) , (2)
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where tan θ(k) = (2b sin k)
−1

[E(k)− E0(k)], E(k) =[
E0(k)2 + 4b2 sin2 k

]1/2
and E0(k) = ε + 2b cos k is the

HL dispersion relation. The ground states |Φ±〉 of H±
resemble the Bardeen-Cooper-Schrieffer (BCS) ground
state and have energies E± = −

∑
[E (k)− E0 (k)] /2,

where the summation is over all allowed k values [3]. All
eigenstates of Eq. (1) are then given by the eigenstates
of H+ produced by applying an even number of G† (β)
operators to |Φ+〉, together with the eigenstates of H−
produced by applying an odd (B < 1) or even (B > 1)
number of G† (α) operators to |Φ−〉 [7]. The ground state
of H is always |Φ+〉.

A key insight of KMM was to suggest that for B > 1
the ground state of the Hamiltonian, Eq. (1), exhibits ei-
ther ferroelectric or anti-ferroelectric polarization. Given
the mapping to Hspin [8], we expect that this ordered
state is stable against quantum fluctuations and that this
regime is separated by a quantum critical point at B = 1
from a disordered regime with no intrinsic polarization
at weak couplings. From now on we will restrict our at-
tention to the case b < 0 [9].

Consider the interaction of such an array with light,
in the electric dipole approximation. Since the dipole
excitation operator σxm = P †m + Pm anti-commutes with
parity, some immediate predictions about the linear spec-
tra of the chromophore assemblies studied can be made.
First, the ground state is coupled to all states of opposite

parity, while in the HL approximation the only allowed
transitions are to single-excitation states [4, 5]. Second,
for B > 1 it can be seen by the residue theorem that the
lowest energy excitation is E− −E+ ∝M1/2 exp(−Mκ),
coshκ = (1+B2)/2B, which goes to zero for all B values
as M → ∞. Provided the matrix element for this tran-
sition is non-zero, photon absorption at arbitrarily low
frequencies is expected for an array of strongly coupled
chromophores. This is in stark contrast to the HL de-
scription that predicts an incorrect energy spectrum and
no allowed low-energy transition for B > 1.

We now describe the calculation of transition ma-
trix elements in this strong coupling regime. With-
out loss of generality, we restrict our attention to
〈Φ−|G (α2n) . . . G (α1)σx1 |Φ+〉, since all allowed excita-
tions may be generated from σx1 by making use of the
translational symmetry of Eq. (1): TPmT

† = Pm−1, 2 ≤
m ≤ M with TP1T

† = PM . In the strong cou-
pling regime, the Hamiltonian ground state, |Φ+〉, has
even parity and the ground state of H−, |Φ−〉, has
odd parity. Consequently, the allowed optical transi-
tions from |Φ+〉 are to |Φ−〉 and to states with an
even number of excitations generated from the latter
state, with corresponding transition dipole moments
〈Φ−|G (α2n) . . . G (α1)σx1 |Φ+〉. Using an extension of
Wick’s theorem [10], these matrix elements can be shown
to satisfy

∑
α1

(α1, β)1 〈Φ−|G (α2n) . . . G (α1)σx1 |Φ+〉 =

2n∑
j=2

(−1)j−1(−αj , β)2∆1j 〈Φ−|G (α2n) . . . G (α1)σx1 |Φ+〉 , (3)

(α, β)l =
[
eiθβ,αei(α−β) − (−1)le−iθβ,α

]
/M

[
ei(β−α) − 1

]
,

l = 1, 2, where θβ,α = θ(β)− θ(α), θ(k) is defined above
and ∆1j denotes removing the operators G (α1) and
G (αj) from the matrix element that follows it. Eq. (3)
can be solved analytically for M →∞ using the methods
of [11] and numerically for finite systems as follows.
Setting n = 1 in Eq. (3) and dividing both sides by
〈Φ−|σx1 |Φ+〉 results in a set of M2 linear equations with
complex coefficients∑

α1

(α1, β)1K (α1, α2) = (−α2, β)2, (4)

which can be grouped into M sets (indexed by α2)
with M linear equations (indexed by β) in each
set. Each set is equivalent to a matrix equa-
tion for a column of the matrix K (α1, α2) =
〈Φ−|G (α2)G (α1)σx1 |Φ+〉 / 〈Φ−|σx1 |Φ+〉 with fixed in-
dex α2, that can be solved by gaussian elimination using
an LU factorization [12]. The denominator 〈Φ−|σx1 |Φ+〉

is determined by a completeness argument

1 = |〈Φ− |σx1 |Φ+〉|2 det (I +X) , (5)

where I is the identity and X is an M × M
real matrix linearly related to K [7]. Solution of
Eqs. (4) and (5) completely defines the matrix ele-
ment 〈Φ−|G (α2)G (α1)σx1 |Φ+〉. Higher-order matrix el-
ements can then be calculated recursively, using the Pfaf-
fian type solution [11] generated by Eq. (3). The solution
is thus an algorithm that relates 2n-particle matrix ele-
ments to ones with 2n − 2 particles. Iterating n times
yields a sum of products of n contraction functions, re-
sulting in a generalized form of Wick’s theorem in which
the in and out states are expressed naturally in terms
of two different representations of the underlying Hilbert
space. The algorithm is polynomial in the system size M ,
which significantly improves over the exponential scaling
of directly diagonalizing Eq. (1) [13]. To our knowledge
this is the first use of such a technique for obtaining exact
solutions for finite sizes.
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FIG. 1: Total oscillator strength a) χ1 vs B for excitation
to the one-excitation manifold in weak coupling (B < 1),
and b) χ0 vs B for excitation to the lowest excited state in
strong coupling (B > 1), for a system of size M = 200 (black
squares) and M → ∞ (red lines). Inset: comparison of χ1

from KMM with values from HL.

The matrix elements 〈Φ− |G (α2n+1) . . . G (α1)σx1 |Φ+〉
in the weak coupling regime, B < 1, can be calculated
using a similar procedure or, alternatively, obtained di-
rectly from the matrix elements in the strong coupling
regime using a duality transformation [7].

This approach now allows a consistent calculation of
the linear spectra of dipole-coupled molecular arrays for
any coupling strength B. We first consider the total os-
cillator strength χi for transitions from the ground state
to the lowest set of excitations i. In the weak coupling
regime, the lowest energy dipole-allowed transitions are
from |Φ+〉 to one-excitation states and we have χ1 =∑
α

∣∣∣〈Φ−|G (α)
∑M
m=1 σ

x
m |Φ+〉

∣∣∣2. In the strong coupling

regime, the lowest energy transition is from |Φ+〉 to |Φ−〉
and we have χ0 =

∣∣∣〈Φ−|∑M
m=1 σ

x
m |Φ+〉

∣∣∣2. These expres-

sions can be simplified using the translational symmetry
of Eq. (1) and explicitly evaluated using the matrix ele-
ments for finite M derived above. The results are shown
by black squares in Figure 1. Solutions for M −→ ∞
may be obtained using the analytic methods of Ref. [10],

yielding limM→∞M−1χ1 = (1−B)
− 3

4 (1 +B)
1
4 and

limM→∞M−2χ0 →
(
1− 1/B2

) 1
4 . These solutions reveal

the size scalings χ1 ∝ M , χ0 ∝ M2 and are plotted as
red lines in Figure 1. We find excellent agreement with
the finite-size values for M = 200 everywhere except very
close to the critical point B = 1 [7], where in the infinite
size limit χ1 diverges and χ0 goes to 0.

Our analysis shows that only the lowest excited state,
α = 0, contributes to the oscillator strength χ1, while χ0

is determined by the single transition from |Φ+〉 to |Φ−〉.
The lowest excited state possesses a one-photon super-
radiance [14] scaling as M for B < 1 (including the HL
limit [15]) and as M2 for B > 1. Furthermore, the su-
perradiance of this state is also strongly dependent on B,
rapidly increasing above the HL value as B increases and
diverging as the critical point is approached from below.
In the strong coupling regime M−2χ0 is asymptotic to 1
as B → ∞, implying that here the excited state |Φ−〉 is

superradiant with a rate ∝ M2 equal to the maximum
possible for non-interacting systems [16] and hence it con-
stitutes a one-photon hyperradiant state [17]. We note
that this superradiance derives from the dipolar interac-
tions within the array rather than from interaction with
the radiation field. The manifestation of superradiance
that is M2-dependent in the strong coupling regime and
divergent at the critical point is quite remarkable, given
that in both situations it is associated with a single exci-
tation. Both critically and strongly coupled arrays would
therefore display extremely fast and high intensity pho-
ton emission.

We already specified that in the limit M → ∞,
M−1χ1 diverges as B → 1−. It is informative to an-
alyze this quantity as a fluctuation sum of pair cor-
relations of transition dipole moments, C(m − n) =∑
α 〈Φ+|σxmG†(α) |Φ−〉 〈Φ−|G(α)σxn |Φ+〉 (B < 1), for

which the correlation propagates solely through single
excitations. Carrying out the sum over α and then us-
ing translational symmetry, we find limM→∞M−1χ1 =
C(0) + 2

∑∞
m=1 C(m), with

C(m) =
(1−B2)1/4

2π

∫ 2π

0

dk
eimk

(1 +B2 − 2B cos k)1/2
.

Asymptotically for large M , we see that there is a length
scale (1−B)

−1
, which diverges at the quantum crit-

ical point. In contrast, for the HL model, we have
C(m) = δmn. Thus not only does HL underestimate the
oscillator strength and hence superradiance for B < 1,
it also shows no divergence at the critical point (see in-
set in Figure 1a). HL is furthermore inapplicable in the
strong coupling regime, where it gives an incorrect energy
spectrum.

The second unusual aspect of linear spectroscopy with
the KMM eigenstates is the presence of finite oscillator
strengths to manifolds of states with multiple excitations.
As explained above and also noted in earlier work focused
exclusively on the weak coupling regime [5, 6], such ex-
citations are not allowed in the HL description and are
a signature of the double excitation and de-excitation
terms, P †mP

†
m+1 and PmPm+1, in Eq. (1). Our spectro-

scopic analysis allows one to extract the contribution of
a manifold with any given number of excitations to the
total oscillator strength. Specifically, oscillator strengths
from the ground state |Φ+〉 to higher excitation number
manifolds, i.e., χ2n+1 (weak coupling) and χ2n (strong
coupling) can be shown to possess the same linearM scal-
ing and critical exponent −3/4 as χ1. Since the number
of states in these manifolds is large (e.g., 19900(1313400)
two(three)-excitation states for M = 200), we sum over
individual transitions in a given k and E interval to
obtain a linear absorption density per unit momentum
transfer and energy, ρA (k,E), which displays the key fea-
tures of the multi-excitation transitions. Figure 2 shows
ρA (k,E) from ground state to the three-excitation man-
ifold (B < 1) and two-excitation manifold (B > 1) for
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FIG. 2: Linear absorption density ρA (k,E) from the ground state |Φ+〉 of an array with M = 200: to the three-excitation
manifold, G† (α1)G† (α2)G† (α3) |Φ−〉, for B = 0.40 (a) and 0.90 (b); to the two-excitation manifold, G† (α1)G† (α2) |Φ−〉, for
B = 1.40 (c). Black lines in panels (a) and (b) indicate the location of the one-excitation manifold, G† (α1) |Φ−〉. In the strong
coupling regime the lowest excitation manifold collapses to a single transition |Φ+〉 −→ |Φ−〉, indicated in panel (c) by the
black dot and red arrow. Energy is in units of ε; wavenumber is in radians per lattice constant of the chromophore array.

an array of M = 200 chromophores. Additional results
and the details of the (k,E) discretization can be found
in [7].

Just as for absorption to the single-excitation manifold,
the multi-excitation absorption is seen to be very differ-
ent in the strong and weak coupling regimes. In the weak
coupling regime (Figure 2a,b) the absorption density
from the ground state, |Φ+〉, to three-excitation states,
G† (α3)G† (α2)G† (α1) |Φ−〉, increases with B (note the
different range of the color bar scale for panels (a) and
(b)). While the transitions with maximum oscillator
strength are always located at k = 0 for b < 0, the max-
imum value of ρA (k,E) is nevertheless located close to
k = ±π as a result of the higher density of states there.
At the critical point B = 1, the parity of the eigenstates
of H− changes (see above) so that in the strong coupling
regime transitions from |Φ+〉 to the two-excitation man-
ifold, G† (α1)G† (α2) |Φ−〉 are now allowed (Figure 2c).
In contrast to the weak coupling regime, as B now in-
creases beyond unity, transitions to the higher-excitation
manifolds are increasingly suppressed until |Φ+〉 → |Φ−〉
becomes the only allowed transition and saturates the
oscillator strength. Because of the asymptotic degener-
acy of |Φ±〉, the transition frequency further decreases
to zero as M increases, implying again strong absorption
and hyperradiance at arbitrarily low energies.

The exact treatment presented here shows that not
only will significantly different linear spectra be found
in weak and strong coupling regimes as a result of the
different many-body nature of the corresponding energy
eigenstates, but also that a unique linear spectral sig-
nature is associated with the quantum critical point at
B = 1. Of particular note are the divergent oscillator
strength at the critical point and superradiance exceed-
ing the maximal one-photon rates, i.e., hyperradiance,
found for B > 1. In this strong-coupling regime, the
KMM model manifests long-range ordering of the transi-
tion dipole moments as M → ∞. (It should be noted

that in d = 1 quantum fluctuations do not necessar-
ily destroy long range order, whereas d ≥ 2 is needed
to stabilize ordered states against thermal fluctuations.)
Writing |Φ±〉 = (|+〉 ± |−〉) /

√
2, where PM |+〉 = |−〉

and 〈+|σx1 |+〉 →
(
1− 1/B2

)1/8
as M → ∞, we note

that excitations are formed by introducing domains of
reversed polarization which result from applying pairs of
local “flip” operators. Excitations are thus generated in
pairs in the strong coupling regime: the fact that only
even numbers are allowed here is a topological constraint
imposed by the cyclic boundary conditions.

While natural light harvesting systems, with electronic
transition energies > 104 cm−1 and typical dipole-dipole
interactions of order ∼ 100 cm−1, appear generally re-
stricted to the weak coupling regime [5], we believe that
the existence of a strong coupling region of parameter
space with the spectral signatures we have described here
may be a common feature of multi-chromophore systems.
Both higher electronic states of neutral molecules [6] and
polar molecules offer systematically larger effective in-
teractions and consequently considerably larger values of
B [18]. Further possibilities are suggested by quantum
emulation of Eq. (1) using ultra cold dipolar molecules
trapped in the sites of an optical lattice [19], capacitively
coupled flux qubits [20] or trapped ions [21]. In par-
ticular, the strong pulse mediated alignment scheme of
Ref. [19] enables controlled preparation of a chromophore
array absorbing in the microwave regime with ε contin-
uously tunable to zero, allowing emulation of the entire
strong coupling regime and suggesting potential opportu-
nities for high-efficiency detection of low energy photons.

More immediately, we note that the theoretical meth-
ods presented here provide a consistent, unifying treat-
ment for all values of B that may be readily ex-
tended to analysis of non-linear spectroscopy for dipole-
coupled chromophore arrays with arbitrary coupling
strength [22].
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